Bifurcation of Critical Periods

Douglas S. Shafer

Abstract

A number of bifurcational problems in the qualitative theory of systems of polynomial differential equations on \mathbb{R}^{2}, $$
\begin{equation*} \dot{x}=P(x, y), \quad \dot{y}=Q(x, y) \tag{1} \end{equation*}
$$ can be formulated as that of obtaining an upper bound on the number of positive isolated zeros that can appear in a neighborhood of the origin when a real analytic family of real analytic functions of the form $$
\mathcal{F}: \mathbb{R} \times E \subset \mathbb{R} \times \mathbb{R}^{m} \rightarrow \mathbb{R}:(z, \theta) \mapsto \sum_{j=0}^{\infty} f_{j}(\theta) z^{j}
$$ is perturbed from a parameter string θ^{*} at which $f_{j}\left(\theta^{*}\right)=0$ for all j. The most famous example is the bifurcation of limit cycles from a center of a polynomial system (1) in which z is the radial polar coordinate r and θ is any admissible string of coefficients in the right hand sides P and Q.

A method of Bautin for treating such problems, which involves obtaining a "minimal" finite basis for a particular ideal in the polynomial ring with indeterminates the admissible coefficients in P and Q, can be extended to the problem of critical periods: for a system (1) with a center at the origin for which the period function is $T(r)$, we consider the maximum number of of zeros of the derivative T^{\prime} that can bifurcate from the zero of T^{\prime} at $r=0$ under small perturbation. The method is now feasible because of advances in both computer hardware and methods of computational commutative algebra. [Joint work with Brigita Ferčec (Maribor), Viktor Levandovskyy (Aachen), and Valery Romanovski (Maribor).]

