Symbolic systems of linear complexity

Nic Ormes

University of Denver

April 11, 2018

Nic Ormes (DU)

Symbolic systems of linear complexity

April 11, 2018 1 / 11

Subshift: Closed, shift-invariant subset of $\mathcal{A}^{\mathbb{Z}}$ where $|\mathcal{A}| < \infty$.

Let $c_n(X)$ denote the complexity sequence for X. That is,

 $c_n(X) = \#$ words of length *n* that occur in X

E.g. If
$$X = \{0, 1\}^{\mathbb{Z}}$$
, $c_n(X) = 2^n$.

Entropy:
$$h(X) = \lim_{n \to \infty} \frac{\log(c_n(X))}{n}$$

Question: What does very slowly growing complexity sequence imply about the dynamics?

Theorem (Morse-Hedlund)

Suppose there is an $n \ge 1$ such that $c_n(X) \le n$. Then $\{c_n(X)\}$ is bounded and X is periodic.

Proof.

Note: $\{c_n(X)\}\$ is a non-decreasing sequence. If $c_1(X) = 1$ then we are done. If not, then

$$2 \leq c_1(X) \leq c_2(X) \leq \cdots \leq c_n(X) \leq n$$

and $c_i(X) = c_{i+1}(X)$ for some *i*. It follows that $x_0x_1 \cdots x_{i-1}$ determines all of *x*. Therefore *X* is finite.

Eventually periodic in both directions

Set

 $x = \ldots 000.1000\ldots$

Then
$$X = \overline{\mathcal{O}(x)}$$
 satisfies $c_n(X) = n + 1$.

Notice x is non-recurrent. That is, there is a word that appears only once in x.

Fix an irrational θ , and consider $[0,1) \mod 1$.

Set $x_n = 0$ if $n\theta \in [0, 1 - \theta)$

Set $x_n = 1$ if $n\theta \in [1 - \theta, 1)$.

 $X = \overline{\mathcal{O}(x)} \subset \{0,1\}^{\mathbb{Z}}$ is minimal and $c_n(X) = n+1$.

Question: Are there transitive, recurrent, non-minimal systems with $n < c_n(X) < 2n$ for all n?

Suppose $n_1 < n_2 < n_3 < \cdots$, and define $X = \overline{\mathcal{O}(x)}$ where

 $x = 0^{\infty}$. 1 0^{n_1} 1 0^{n_2} 1 0^{n_1} 1 0^{n_3} 1 0^{n_1} 1 0^{n_2} 1 0^{n_1} 1 0^{n_4} ...

Then X is recurrent, transitive, non-minimal.

One can choose $n_1 \ll n_2 \ll n_3 \ll \cdots$ so that

•
$$\limsup \frac{c_n(X)}{n} = 1.5$$
,

• lim inf
$$\frac{c_n(X)}{n} = 1$$
.

Theorem (Heinis)

Let
$$\alpha = \liminf \frac{c_n(X)}{n}$$
, $\beta = \limsup \frac{c_n(X)}{n}$ if $1 < \alpha < 2$ then
 $\beta - \alpha \ge \frac{(2 - \alpha)(\alpha - 1)}{\alpha}$.

Conjecture: If $\liminf \frac{c_n(X)}{n} = \limsup \frac{c_n(X)}{n} < \infty$ then $\limsup \frac{c_n(X)}{n}$ is an integer.

Theorem (O, Pavlov)

If X is recurrent, transitive, and non-minimal then

 $\limsup c_n(X) - 1.5n = \infty.$

Implication: There are no recurrent, transitive, non-minimal systems with $c_n(X) \le 1.5n$ for all $n \ge 1$.

Theorem (Dykstra, O, Pavlov)

If X is a transitive, recurrent system with $m \ge 2$ distinct minimal subsystems then

$$\limsup_{n\to\infty}c_n(X)-(m+1)n=\infty$$

Corollary

If X is a transitive, recurrent system such that

$$\limsup_{n \to \infty} \frac{c_n(X)}{n} < k$$

then X can have at most k - 1 minimal subsystems.

$$\liminf_{n \to \infty} \frac{c_n(X)}{n} < k$$

then there are at most k - 1 ergodic measures.

lf

Theorem (Dykstra, O, Pavlov)

If X is a transitive, recurrent system with m distinct infinite minimal subsystems and p distinct periodic subsystems then

$$\limsup_{n\to\infty} c_n(X) - (2m+p+1)n = \infty$$