Periodic Codings of Some Ergodic Systems

Sarah Bailey Frick

Furman University

sarah.frick@furman.edu

April 14, 2018

Sarah Bailey Frick (FU)

Periodic Codings

:▶ ◀ 볼 ▶ 볼 ∽ ९. April 14, 2018 1 / 21

イロト イポト イヨト イヨ

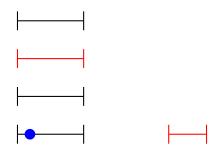
Joint work with Karl Petersen (UNC-Chapel Hill) and Sandi Shields (College of Charleston)

イロト イヨト イヨト イヨト

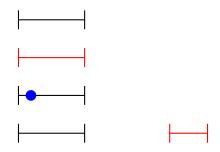
- When is an ergodic measure-preserving system, measure theoretic isomorphic to an odometer?
- When does an ergodic measure-preserving system have a k factor with finitely many points?
- When does an ergodic measure-preserving system have k factors with finitely many points for all k?

-

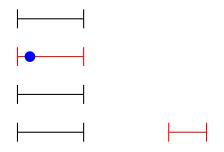
-



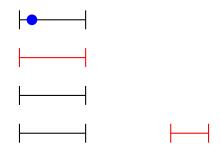
3



3



3



3

Image: A match a ma

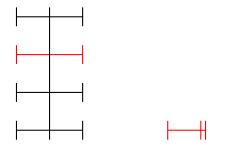
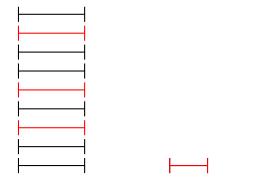
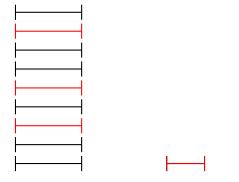


Image: A math a math

DQC

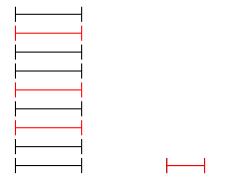


• Tower is cut into equal length pieces (More freedom beyond rank 1)



• Tower is cut into equal length pieces (More freedom beyond rank 1)

• Tower height continues to grow



- Tower is cut into equal length pieces (More freedom beyond rank 1)
- Tower height continues to grow
- Spacers are inserted between full stacks (otherwise not defined)

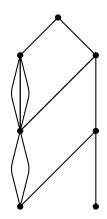
• Start with root vertex (the only source)

<ロト <回ト < 回ト < 回

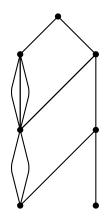
- Start with root vertex (the only source)
- Countable number of vertices partitioned into levels 2 for Rank 1

Image: A matrix A

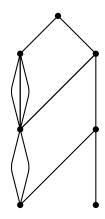
- Start with root vertex (the only source)
- Countable number of vertices partitioned into levels 2 for Rank 1
- Edges connect only vertices on consecutive levels (no sinks)



- Start with root vertex (the only source)
- Countable number of vertices partitioned into levels 2 for Rank 1
- Edges connect only vertices on consecutive levels (no sinks)
- "Spacer" vertex has only one source.



• Order edges with the same range - Corresponds to same tower in C&S



イロト イポト イヨト イヨ

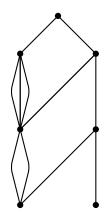
DQC

- Order edges with the same range – Corresponds to same tower in C&S
- Extend ordering to a partial ordering on infinite downward directed paths

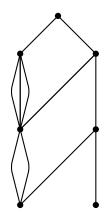
→ Ξ →

DQC

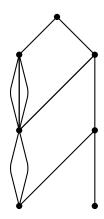
- Order edges with the same range – Corresponds to same tower in C&S
- Extend ordering to a partial ordering on infinite downward directed paths
 - Paths are comparable if they eventually agree eventually directly inline in C&S



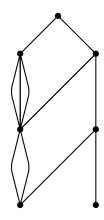
- Order edges with the same range – Corresponds to same tower in C&S
- Extend ordering to a partial ordering on infinite downward directed paths
 - Paths are comparable if they eventually agree eventually directly inline in C&S
- Vershik map
 - Find first non-maximal edge with a successor



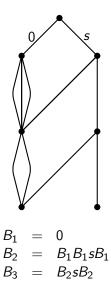
- Order edges with the same range – Corresponds to same tower in C&S
- Extend ordering to a partial ordering on infinite downward directed paths
 - Paths are comparable if they eventually agree eventually directly inline in C&S
- Vershik map
 - Find first non-maximal edge with a successor
 - Switch edge with successor



- Order edges with the same range – Corresponds to same tower in C&S
- Extend ordering to a partial ordering on infinite downward directed paths
 - Paths are comparable if they eventually agree eventually directly inline in C&S
- Vershik map
 - Find first non-maximal edge with a successor
 - Switch edge with successor
 - Follow minimal edges back to the root

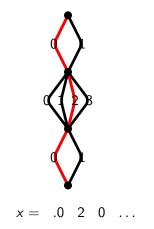


Recursion

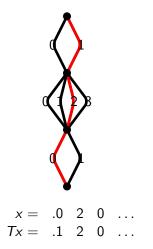


April 14, 2018 6 / 21

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト 一 臣 … の Q ()

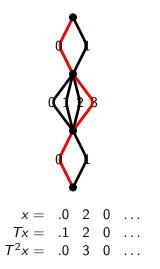


イロト イヨト イヨト イヨト



- 2 April 14, 2018 7 / 21

イロト イヨト イヨト イヨト

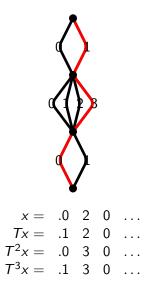


Sarah Bailey Frick (FU)

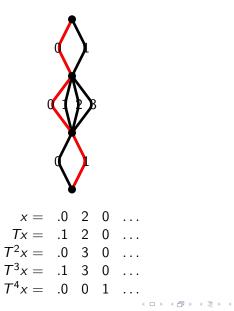
April 14, 2018 7 / 21

イロト イポト イヨト イヨト

E OQC



イロト イポト イヨト イヨト



Sarah Bailey Frick (FU)

- 2 April 14, 2018 7 / 21

∃ >

Sarah Bailey Frick (FU)

999

イロト イヨト イヨト イヨト

 $\phi(x) = 01$

Sarah Bailey Frick (FU)	Sara	h Bai	ley Fric	k (FU)
-------------------------	------	-------	----------	--------

990

・ロト ・四ト ・ヨト ・ヨト

 $\phi(x) = 010$

Bailey	

990

・ロト ・四ト ・ヨト ・ヨト

 $\phi(x) = 0101$

Saral			

990

イロト イヨト イヨト イヨト

$\phi(x) = 01010\ldots$

Sarah Bailey Frick (FU)

臣 April 14, 2018 8 / 21

996

イロト イヨト イヨト イヨト

 $\phi(x) = 01010...$

• This gives rise to a subshift on $\{0,1\}^{\mathbb{Z}}$, (Σ_1,σ) .

-

Image: A match a ma

 $\phi(x) = 01010\ldots$

- This gives rise to a subshift on $\{0,1\}^{\mathbb{Z}}$, (Σ_1,σ) .
- This system is then a factor of the original system.

Coding by the first edge

 $\phi(x) = 01010\ldots$

- This gives rise to a subshift on $\{0,1\}^{\mathbb{Z}}$, (Σ_1,σ) .
- This system is then a factor of the original system.
- Can be extended to coding by the first k edges.

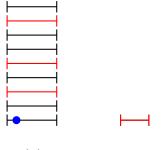
Image: A math a math

Coding by the first edge

 $\phi(x) = 01010\ldots$

- This gives rise to a subshift on $\{0,1\}^{\mathbb{Z}}$, (Σ_1,σ) .
- This system is then a factor of the original system.
- Can be extended to coding by the first k edges.
- For an odometer, coding by the first k edges is always periodic.

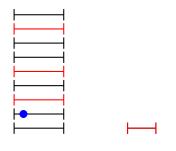
Image: A math a math



 $\phi_1(x) = 0$

- - ≣ →

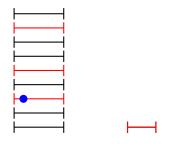
(日) (日) (日) (日)



 $\phi_1(x) = 00$

→ Ξ →

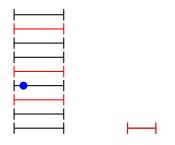
・ロト ・回ト ・ヨト



 $\phi_1(x) = 00s$

→ Ξ →

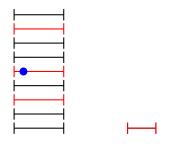
(日) (日) (日) (日)



 $\phi_1(x) = 00s0$

→ Ξ →

Image: A math a math



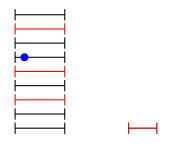
 $\phi_1(x) = 00s0s$

Sarah Bailey Frick (FU)

E April 14, 2018 9 / 21

→ Ξ →

Image: A math a math



 $\phi_1(x) = 00s0s0$

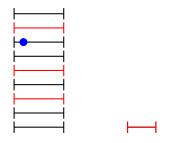
Sarah Bailey Frick (FU)

Periodic Codings

E April 14, 2018 9 / 21

→ Ξ →

Image: A math a math



 $\phi_1(x) = 00s0s00$

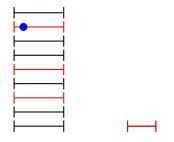
Sarah Bailey Frick (FU)

Periodic Codings

E April 14, 2018 9 / 21

→ Ξ →

Image: A math a math



 $\phi_1(x) = 00s0s00s$

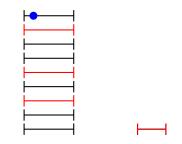
Sarah Bailey Frick (FU)

Periodic Codings

E April 14, 2018 9 / 21

→ Ξ →

Image: A math a math

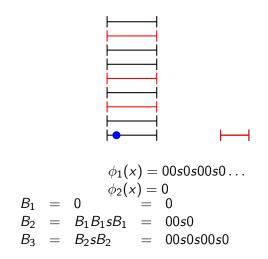


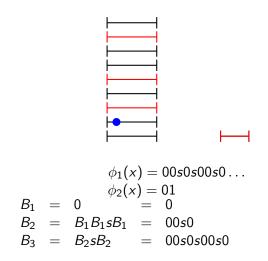
 $\phi_1(x) = 00s0s00s0\ldots$

$$\begin{array}{rcrcrcrc} B_1 &=& 0 &=& 0 \\ B_2 &=& B_1 B_1 s B_1 &=& 00 s 0 \\ B_3 &=& B_2 s B_2 &=& 00 s 0 s 0 s 0 s 0 s 0 \end{array}$$

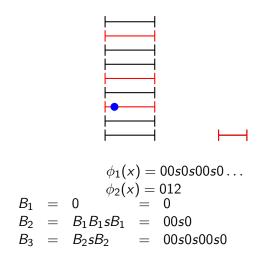
Image: A match a ma

E

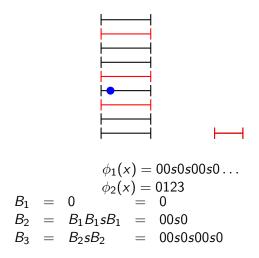


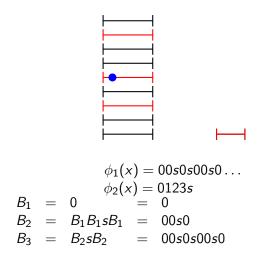


∃ ∽ ९ ୯

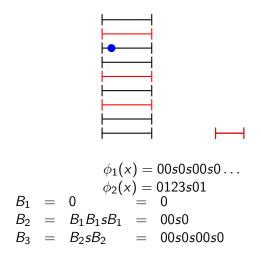


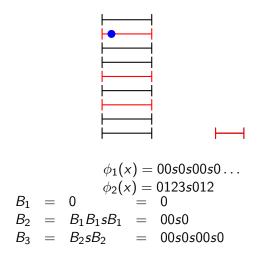
E 990

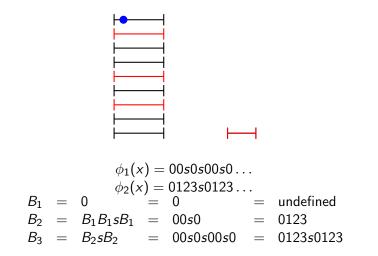












Rank One Result-Part I

$$B_n = B_{n-1}s^{a(n,0)}B_{n-1}s^{a(n,1)}\dots B_{n-1}s^{a(n,q_n-1)}$$

Let $\omega \in \{0, s\}^{\mathbb{N}}$ such that for each $n \ge 0$, $\omega = B_n \dots$. Equivalently:

- The 1st level coding in the cutting and stacking of a point that is on the bottom of the tower.
- In the Bratteli Diagram, the 1st edge coding of the path for which every edge is minimal (down the left side)

Theorem (F., Petersen, Shields)

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then: (1)There are $N \in \mathbb{N}$ and $a \ge 0$ such that for all $n \ge N$ we have $a(n, q_n - 1) = 0$ and for all $i < q_n - 1$ all a(n, i) = a.

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Manifestations

• Recursion

•
$$B_n = (B_{n-1}s^a)^{t_n}B_{n-1}$$

Manifestations

Recursion

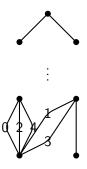
•
$$B_n = (B_{n-1}s^a)^{t_n}B_{n-1}$$

- Cutting and Stacking
 - Between each copy of the tower, there are always the same number of spacers. No spacers at the top.

3

Manifestations

- Recursion
 - $B_n = (B_{n-1}s^a)^{t_n}B_{n-1}$
- Cutting and Stacking
 - Between each copy of the tower, there are always the same number of spacers. No spacers at the top.
- Bratteli Diagrams



Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then:

(2) For every $k \ge 1$ the k-coding of ω by the first k edges is periodic.

$$B_n = (B_{n-1}s^a)^{t_n}B_{n-1}$$

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then:

(2) For every $k \ge 1$ the k-coding of ω by the first k edges is periodic.

$$B_n = (B_{n-1}s^a)^{t_n}B_{n-1}$$

$$B_{n+1} = (B_n s^a)^{t_{n+1}} B_n$$

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then:

(2) For every $k \ge 1$ the k-coding of ω by the first k edges is periodic.

$$B_n = (B_{n-1}s^a)^{t_n}B_{n-1}$$

$$B_{n+1} = (B_n s^a)^{t_{n+1}} B_n$$

= $((B_{n-1} s^a)^{t_n} B_{n-1} s^a)^{t_{n+1}} (B_{n-1} s^a)^{t_n} B_{n-1}$

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then:

(2) For every $k \ge 1$ the k-coding of ω by the first k edges is periodic.

$$B_n = (B_{n-1}s^a)^{t_n}B_{n-1}$$

$$B_{n+1} = (B_n s^a)^{t_{n+1}} B_n$$

= $((B_{n-1} s^a)^{t_n} B_{n-1} s^a)^{t_{n+1}} (B_{n-1} s^a)^{t_n} B_{n-1}$
= $(B_{n-1} s^a)^{t'_{n+1}} B_{n-1}$

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then: (3) With its unique nonatomic invariant measure the system is measure-theoretically isomorphic to an odometer.

• Given μ , the partitions of X according to the first k edges generate the full sigma-algebra of X.

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then: (3) With its unique nonatomic invariant measure the system is measure-theoretically isomorphic to an odometer.

- Given μ , the partitions of X according to the first k edges generate the full sigma-algebra of X.
- So, the full system is isomorphic to its inverse limit.

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then: (3) With its unique nonatomic invariant measure the system is measure-theoretically isomorphic to an odometer.

- Given μ , the partitions of X according to the first k edges generate the full sigma-algebra of X.
- So, the full system is isomorphic to its inverse limit.
- Since every *k*-factor is finite, the inverse limit is an odometer.

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then: (3) With its unique nonatomic invariant measure the system is measure-theoretically isomorphic to an odometer.

- Given μ , the partitions of X according to the first k edges generate the full sigma-algebra of X.
- So, the full system is isomorphic to its inverse limit.
- Since every *k*-factor is finite, the inverse limit is an odometer.
- Note: This is a sufficient condition, not necessary.

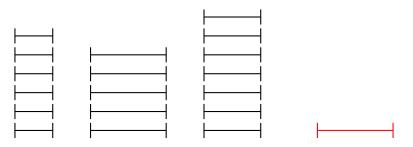
Rank One Result – Part IV!

$$B_n = (B_{n-1}s^a)^{t_n}B_{n-1}$$

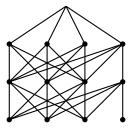
Theorem (F. Petersen, Shields)

Suppose that $\omega = \omega_0 \omega_1 \dots$ is periodic. Then: (4) If a = 0 the subset of X where T and T^{-1} are defined is topologically conjugate to an odometer or a permutation of finitely many points.

- Cutting and Stacking
 - More main towers, still only one spacer reservoir

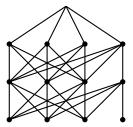


Bratteli Diagram and Recursion



- Last vertex has only one source (spacer)
- Rest of the vertices anything goes

Bratteli Diagram and Recursion



- Last vertex has only one source (spacer)
- Rest of the vertices anything goes

$$B(n,j) = B(n-1,j_1)s^{a(n,1)}B(n-1,j_2)s^{a(n,2)}\dots B(n-1,j_{q-1})s^{a(n,q-1)}$$

If the coding $\omega = \phi_k(x)$ by the first k-edges of some transitive path $x \in X$ is periodic with minimal period P_k so that $\omega = P_k P_k P_k \dots$, then for all sufficiently large n and $j = 1, \dots, K_{n+1}$ we have

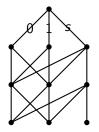
$$B(n,j) = (U_k s^m)^{t(n,j)} U_k s^{l(n,j)}$$

where $P_k = Us^m$ for some $U \in A_k^*$ and $m \in \mathbb{N} \cup 0$.

- Difference from rank one:
- Can have spacers at the end
- Having a periodic *k*-coding does not imply the *k* + 1-coding is periodic.

イロト 不得 トイヨト イヨト ヨー シタウ

Example

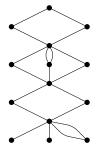


B(2,1) = 0s1 and B(3,1) = B(2,1)sB(2,2)B(2,2) = 0s1 B(3,2) = B(2,2)sB(2,1)

$$B_1(3,1) = 0s1s0s1 = (0s1)^2 = B_1(3,2)$$

 $B_2(3,1) = abcsdef$ and $B_2(3,2) = defsabc$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - つへ⊙



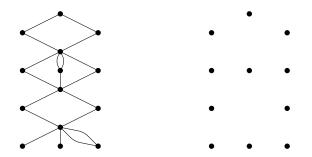
• Collapsing levels

590

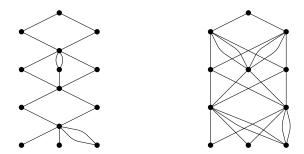
표 문 표

-

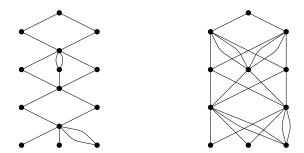
• • • • • • • •



- Collapsing levels
- Delete vertices from collapsed levels



- Collapsing levels
- Delete vertices from collapsed levels
- Edges and ordering are such that the number and order of paths from remaining vertices are consistent



- Collapsing levels
- Delete vertices from collapsed levels
- Edges and ordering are such that the number and order of paths from remaining vertices are consistent
- New system is equivalent to old

Theorem 3

Theorem (F., Petersen, Shields)

The coding of some transitive path $x \in X$ by paths of length k is periodic for all k > 0 if and only if there exists a telescoping so for all n > 0 there is a

$$U_n = B(n-1, j_1)s^{m(j_1)}B(n-1, j_2)s^{m(j_2)}\dots B(n-1, j_q)s^{m(q_n)}$$

so that for each $j = 1, 2, \ldots K_n$

$$B(n,j) = (U_n s^{c(n,j)})^{t(n,j)} U_n s^{l(n,j)}$$

where $0 \le l(n, j) < c(n, j)$.

- Whenever $B(n-1, j_1)$ appears explicitly in the recursion of B(n, j) it is followed by the same number of spacers.
- Every recursion has a basic ordering that is repeated possibly multiple times and then some spacers on the end.

Sarah Bailey Frick (FU)

Periodic Codings

April 14, 2018 20 / 21

Thank you!

E 990

・ロト ・四ト ・ヨト ・ヨト